#ifndef SRC_CRYPTO_CRYPTO_UTIL_H_
#define SRC_CRYPTO_CRYPTO_UTIL_H_
#if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#include "async_wrap.h"
#include "env.h"
#include "node_errors.h"
#include "node_external_reference.h"
#include "node_internals.h"
#include "string_bytes.h"
#include "util.h"
#include "v8.h"
#include <openssl/dsa.h>
#include <openssl/ec.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/kdf.h>
#include <openssl/rsa.h>
#include <openssl/ssl.h>
#ifndef OPENSSL_NO_ENGINE
# include <openssl/engine.h>
#endif // !OPENSSL_NO_ENGINE
// The FIPS-related functions are only available
// when the OpenSSL itself was compiled with FIPS support.
#if defined(OPENSSL_FIPS) && OPENSSL_VERSION_MAJOR < 3
# include <openssl/fips.h>
#endif // OPENSSL_FIPS
#include <algorithm>
#include <climits>
#include <cstdio>
#include <memory>
#include <optional>
#include <string>
#include <vector>
namespace node {
namespace crypto {
// Currently known sizes of commonly used OpenSSL struct sizes.
// OpenSSL considers it's various structs to be opaque and the
// sizes may change from one version of OpenSSL to another, so
// these values should not be trusted to remain static. These
// are provided to allow for some close to reasonable memory
// tracking.
constexpr size_t kSizeOf_DH = 144;
constexpr size_t kSizeOf_EC_KEY = 80;
constexpr size_t kSizeOf_EVP_CIPHER_CTX = 168;
constexpr size_t kSizeOf_EVP_MD_CTX = 48;
constexpr size_t kSizeOf_EVP_PKEY = 72;
constexpr size_t kSizeOf_EVP_PKEY_CTX = 80;
constexpr size_t kSizeOf_HMAC_CTX = 32;
// Define smart pointers for the most commonly used OpenSSL types:
using X509Pointer = DeleteFnPtr<X509, X509_free>;
using BIOPointer = DeleteFnPtr<BIO, BIO_free_all>;
using SSLCtxPointer = DeleteFnPtr<SSL_CTX, SSL_CTX_free>;
using SSLSessionPointer = DeleteFnPtr<SSL_SESSION, SSL_SESSION_free>;
using SSLPointer = DeleteFnPtr<SSL, SSL_free>;
using PKCS8Pointer = DeleteFnPtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_free>;
using EVPKeyPointer = DeleteFnPtr<EVP_PKEY, EVP_PKEY_free>;
using EVPKeyCtxPointer = DeleteFnPtr<EVP_PKEY_CTX, EVP_PKEY_CTX_free>;
using EVPMDPointer = DeleteFnPtr<EVP_MD_CTX, EVP_MD_CTX_free>;
using RSAPointer = DeleteFnPtr<RSA, RSA_free>;
using ECPointer = DeleteFnPtr<EC_KEY, EC_KEY_free>;
using BignumPointer = DeleteFnPtr<BIGNUM, BN_free>;
using BignumCtxPointer = DeleteFnPtr<BN_CTX, BN_CTX_free>;
using NetscapeSPKIPointer = DeleteFnPtr<NETSCAPE_SPKI, NETSCAPE_SPKI_free>;
using ECGroupPointer = DeleteFnPtr<EC_GROUP, EC_GROUP_free>;
using ECPointPointer = DeleteFnPtr<EC_POINT, EC_POINT_free>;
using ECKeyPointer = DeleteFnPtr<EC_KEY, EC_KEY_free>;
using DHPointer = DeleteFnPtr<DH, DH_free>;
using ECDSASigPointer = DeleteFnPtr<ECDSA_SIG, ECDSA_SIG_free>;
using HMACCtxPointer = DeleteFnPtr<HMAC_CTX, HMAC_CTX_free>;
using CipherCtxPointer = DeleteFnPtr<EVP_CIPHER_CTX, EVP_CIPHER_CTX_free>;
using RsaPointer = DeleteFnPtr<RSA, RSA_free>;
using DsaPointer = DeleteFnPtr<DSA, DSA_free>;
using DsaSigPointer = DeleteFnPtr<DSA_SIG, DSA_SIG_free>;
// Our custom implementation of the certificate verify callback
// used when establishing a TLS handshake. Because we cannot perform
// I/O quickly enough with X509_STORE_CTX_ APIs in this callback,
// we ignore preverify_ok errors here and let the handshake continue.
// In other words, this VerifyCallback is a non-op. It is imperative
// that the user user Connection::VerifyError after the `secure`
// callback has been made.
extern int VerifyCallback(int preverify_ok, X509_STORE_CTX* ctx);
bool ProcessFipsOptions();
bool InitCryptoOnce(v8::Isolate* isolate);
void InitCryptoOnce();
void InitCrypto(v8::Local<v8::Object> target);
extern void UseExtraCaCerts(const std::string& file);
// Forcibly clear OpenSSL's error stack on return. This stops stale errors
// from popping up later in the lifecycle of crypto operations where they
// would cause spurious failures. It's a rather blunt method, though.
// ERR_clear_error() isn't necessarily cheap either.
struct ClearErrorOnReturn {
~ClearErrorOnReturn() { ERR_clear_error(); }
};
// Pop errors from OpenSSL's error stack that were added
// between when this was constructed and destructed.
struct MarkPopErrorOnReturn {
MarkPopErrorOnReturn() { ERR_set_mark(); }
~MarkPopErrorOnReturn() { ERR_pop_to_mark(); }
};
struct CSPRNGResult {
const bool ok;
MUST_USE_RESULT bool is_ok() const { return ok; }
MUST_USE_RESULT bool is_err() const { return !ok; }
};
// Either succeeds with exactly |length| bytes of cryptographically
// strong pseudo-random data, or fails. This function may block.
// Don't assume anything about the contents of |buffer| on error.
// As a special case, |length == 0| can be used to check if the CSPRNG
// is properly seeded without consuming entropy.
MUST_USE_RESULT CSPRNGResult CSPRNG(void* buffer, size_t length);
int PasswordCallback(char* buf, int size, int rwflag, void* u);
int NoPasswordCallback(char* buf, int size, int rwflag, void* u);
// Decode is used by the various stream-based crypto utilities to decode
// string input.
template <typename T>
void Decode(const v8::FunctionCallbackInfo<v8::Value>& args,
void (*callback)(T*, const v8::FunctionCallbackInfo<v8::Value>&,
const char*, size_t)) {
T* ctx;
ASSIGN_OR_RETURN_UNWRAP(&ctx, args.Holder());
if (args[0]->IsString()) {
StringBytes::InlineDecoder decoder;
Environment* env = Environment::GetCurrent(args);
enum encoding enc = ParseEncoding(env->isolate(), args[1], UTF8);
if (decoder.Decode(env, args[0].As<v8::String>(), enc).IsNothing())
return;
callback(ctx, args, decoder.out(), decoder.size());
} else {
ArrayBufferViewContents<char> buf(args[0]);
callback(ctx, args, buf.data(), buf.length());
}
}
#define NODE_CRYPTO_ERROR_CODES_MAP(V) \
V(CIPHER_JOB_FAILED, "Cipher job failed") \
V(DERIVING_BITS_FAILED, "Deriving bits failed") \
V(ENGINE_NOT_FOUND, "Engine \"%s\" was not found") \
V(INVALID_KEY_TYPE, "Invalid key type") \
V(KEY_GENERATION_JOB_FAILED, "Key generation job failed") \
V(OK, "Ok") \
enum class NodeCryptoError {
#define V(CODE, DESCRIPTION) CODE,
NODE_CRYPTO_ERROR_CODES_MAP(V)
#undef V
};
// Utility struct used to harvest error information from openssl's error stack
struct CryptoErrorStore final : public MemoryRetainer {
public:
void Capture();
bool Empty() const;
template <typename... Args>
void Insert(const NodeCryptoError error, Args&&... args);
v8::MaybeLocal<v8::Value> ToException(
Environment* env,
v8::Local<v8::String> exception_string = v8::Local<v8::String>()) const;
SET_NO_MEMORY_INFO()
SET_MEMORY_INFO_NAME(CryptoErrorStore)
SET_SELF_SIZE(CryptoErrorStore)
private:
std::vector<std::string> errors_;
};
template <typename... Args>
void CryptoErrorStore::Insert(const NodeCryptoError error, Args&&... args) {
const char* error_string = nullptr;
switch (error) {
#define V(CODE, DESCRIPTION) \
case NodeCryptoError::CODE: error_string = DESCRIPTION; break;
NODE_CRYPTO_ERROR_CODES_MAP(V)
#undef V
}
errors_.emplace_back(SPrintF(error_string,
std::forward<Args>(args)...));
}
template <typename T>
T* MallocOpenSSL(size_t count) {
void* mem = OPENSSL_malloc(MultiplyWithOverflowCheck(count, sizeof(T)));
CHECK_IMPLIES(mem == nullptr, count == 0);
return static_cast<T*>(mem);
}
// A helper class representing a read-only byte array. When deallocated, its
// contents are zeroed.
class ByteSource {
public:
class Builder {
public:
// Allocates memory using OpenSSL's memory allocator.
explicit Builder(size_t size)
: data_(MallocOpenSSL<char>(size)), size_(size) {}
Builder(Builder&& other) = delete;
Builder& operator=(Builder&& other) = delete;
Builder(const Builder&) = delete;
Builder& operator=(const Builder&) = delete;
~Builder() { OPENSSL_clear_free(data_, size_); }
// Returns the underlying non-const pointer.
template <typename T>
T* data() {
return reinterpret_cast<T*>(data_);
}
// Returns the (allocated) size in bytes.
size_t size() const { return size_; }
// Finalizes the Builder and returns a read-only view that is optionally
// truncated.
ByteSource release(std::optional<size_t> resize = std::nullopt) && {
if (resize) {
CHECK_LE(*resize, size_);
if (*resize == 0) {
OPENSSL_clear_free(data_, size_);
data_ = nullptr;
}
size_ = *resize;
}
ByteSource out = ByteSource::Allocated(data_, size_);
data_ = nullptr;
size_ = 0;
return out;
}
private:
void* data_;
size_t size_;
};
ByteSource() = default;
ByteSource(ByteSource&& other) noexcept;
~ByteSource();
ByteSource& operator=(ByteSource&& other) noexcept;
ByteSource(const ByteSource&) = delete;
ByteSource& operator=(const ByteSource&) = delete;
template <typename T = void>
const T* data() const {
return reinterpret_cast<const T*>(data_);
}
size_t size() const { return size_; }
operator bool() const { return data_ != nullptr; }
BignumPointer ToBN() const {
return BignumPointer(BN_bin2bn(data<unsigned char>(), size(), nullptr));
}
// Creates a v8::BackingStore that takes over responsibility for
// any allocated data. The ByteSource will be reset with size = 0
// after being called.
std::unique_ptr<v8::BackingStore> ReleaseToBackingStore();
v8::Local<v8::ArrayBuffer> ToArrayBuffer(Environment* env);
v8::MaybeLocal<v8::Uint8Array> ToBuffer(Environment* env);
static ByteSource Allocated(void* data, size_t size);
static ByteSource Foreign(const void* data, size_t size);
static ByteSource FromEncodedString(Environment* env,
v8::Local<v8::String> value,
enum encoding enc = BASE64);
static ByteSource FromStringOrBuffer(Environment* env,
v8::Local<v8::Value> value);
static ByteSource FromString(Environment* env,
v8::Local<v8::String> str,
bool ntc = false);
static ByteSource FromBuffer(v8::Local<v8::Value> buffer,
bool ntc = false);
static ByteSource FromBIO(const BIOPointer& bio);
static ByteSource NullTerminatedCopy(Environment* env,
v8::Local<v8::Value> value);
static ByteSource FromSymmetricKeyObjectHandle(v8::Local<v8::Value> handle);
static ByteSource FromSecretKeyBytes(
Environment* env, v8::Local<v8::Value> value);
private:
const void* data_ = nullptr;
void* allocated_data_ = nullptr;
size_t size_ = 0;
ByteSource(const void* data, void* allocated_data, size_t size)
: data_(data), allocated_data_(allocated_data), size_(size) {}
};
enum CryptoJobMode {
kCryptoJobAsync,
kCryptoJobSync
};
CryptoJobMode GetCryptoJobMode(v8::Local<v8::Value> args);
template <typename CryptoJobTraits>
class CryptoJob : public AsyncWrap, public ThreadPoolWork {
public:
using AdditionalParams = typename CryptoJobTraits::AdditionalParameters;
explicit CryptoJob(Environment* env,
v8::Local<v8::Object> object,
AsyncWrap::ProviderType type,
CryptoJobMode mode,
AdditionalParams&& params)
: AsyncWrap(env, object, type),
ThreadPoolWork(env, "crypto"),
mode_(mode),
params_(std::move(params)) {
// If the CryptoJob is async, then the instance will be
// cleaned up when AfterThreadPoolWork is called.
if (mode == kCryptoJobSync) MakeWeak();
}
bool IsNotIndicativeOfMemoryLeakAtExit() const override {
// CryptoJobs run a work in the libuv thread pool and may still
// exist when the event loop empties and starts to exit.
return true;
}
void AfterThreadPoolWork(int status) override {
Environment* env = AsyncWrap::env();
CHECK_EQ(mode_, kCryptoJobAsync);
CHECK(status == 0 || status == UV_ECANCELED);
std::unique_ptr<CryptoJob> ptr(this);
// If the job was canceled do not execute the callback.
// TODO(@jasnell): We should likely revisit skipping the
// callback on cancel as that could leave the JS in a pending
// state (e.g. unresolved promises...)
if (status == UV_ECANCELED) return;
v8::HandleScope handle_scope(env->isolate());
v8::Context::Scope context_scope(env->context());
// TODO(tniessen): Remove the exception handling logic here as soon as we
// can verify that no code path in ToResult will ever throw an exception.
v8::Local<v8::Value> exception;
v8::Local<v8::Value> args[2];
{
node::errors::TryCatchScope try_catch(env);
v8::Maybe<bool> ret = ptr->ToResult(&args[0], &args[1]);
if (!ret.IsJust()) {
CHECK(try_catch.HasCaught());
exception = try_catch.Exception();
} else if (!ret.FromJust()) {
return;
}
}
if (exception.IsEmpty()) {
ptr->MakeCallback(env->ondone_string(), arraysize(args), args);
} else {
ptr->MakeCallback(env->ondone_string(), 1, &exception);
}
}
virtual v8::Maybe<bool> ToResult(
v8::Local<v8::Value>* err,
v8::Local<v8::Value>* result) = 0;
CryptoJobMode mode() const { return mode_; }
CryptoErrorStore* errors() { return &errors_; }
AdditionalParams* params() { return ¶ms_; }
const char* MemoryInfoName() const override {
return CryptoJobTraits::JobName;
}
void MemoryInfo(MemoryTracker* tracker) const override {
tracker->TrackField("params", params_);
tracker->TrackField("errors", errors_);
}
static void Run(const v8::FunctionCallbackInfo<v8::Value>& args) {
Environment* env = Environment::GetCurrent(args);
CryptoJob<CryptoJobTraits>* job;
ASSIGN_OR_RETURN_UNWRAP(&job, args.Holder());
if (job->mode() == kCryptoJobAsync)
return job->ScheduleWork();
v8::Local<v8::Value> ret[2];
env->PrintSyncTrace();
job->DoThreadPoolWork();
v8::Maybe<bool> result = job->ToResult(&ret[0], &ret[1]);
if (result.IsJust() && result.FromJust()) {
args.GetReturnValue().Set(
v8::Array::New(env->isolate(), ret, arraysize(ret)));
}
}
static void Initialize(
v8::FunctionCallback new_fn,
Environment* env,
v8::Local<v8::Object> target) {
v8::Isolate* isolate = env->isolate();
v8::HandleScope scope(isolate);
v8::Local<v8::Context> context = env->context();
v8::Local<v8::FunctionTemplate> job = NewFunctionTemplate(isolate, new_fn);
job->Inherit(AsyncWrap::GetConstructorTemplate(env));
job->InstanceTemplate()->SetInternalFieldCount(
AsyncWrap::kInternalFieldCount);
SetProtoMethod(isolate, job, "run", Run);
SetConstructorFunction(context, target, CryptoJobTraits::JobName, job);
}
static void RegisterExternalReferences(v8::FunctionCallback new_fn,
ExternalReferenceRegistry* registry) {
registry->Register(new_fn);
registry->Register(Run);
}
private:
const CryptoJobMode mode_;
CryptoErrorStore errors_;
AdditionalParams params_;
};
template <typename DeriveBitsTraits>
class DeriveBitsJob final : public CryptoJob<DeriveBitsTraits> {
public:
using AdditionalParams = typename DeriveBitsTraits::AdditionalParameters;
static void New(const v8::FunctionCallbackInfo<v8::Value>& args) {
Environment* env = Environment::GetCurrent(args);
CryptoJobMode mode = GetCryptoJobMode(args[0]);
AdditionalParams params;
if (DeriveBitsTraits::AdditionalConfig(mode, args, 1, ¶ms)
.IsNothing()) {
// The DeriveBitsTraits::AdditionalConfig is responsible for
// calling an appropriate THROW_CRYPTO_* variant reporting
// whatever error caused initialization to fail.
return;
}
new DeriveBitsJob(env, args.This(), mode, std::move(params));
}
static void Initialize(
Environment* env,
v8::Local<v8::Object> target) {
CryptoJob<DeriveBitsTraits>::Initialize(New, env, target);
}
static void RegisterExternalReferences(ExternalReferenceRegistry* registry) {
CryptoJob<DeriveBitsTraits>::RegisterExternalReferences(New, registry);
}
DeriveBitsJob(
Environment* env,
v8::Local<v8::Object> object,
CryptoJobMode mode,
AdditionalParams&& params)
: CryptoJob<DeriveBitsTraits>(
env,
object,
DeriveBitsTraits::Provider,
mode,
std::move(params)) {}
void DoThreadPoolWork() override {
if (!DeriveBitsTraits::DeriveBits(
AsyncWrap::env(),
*CryptoJob<DeriveBitsTraits>::params(), &out_)) {
CryptoErrorStore* errors = CryptoJob<DeriveBitsTraits>::errors();
errors->Capture();
if (errors->Empty())
errors->Insert(NodeCryptoError::DERIVING_BITS_FAILED);
return;
}
success_ = true;
}
v8::Maybe<bool> ToResult(
v8::Local<v8::Value>* err,
v8::Local<v8::Value>* result) override {
Environment* env = AsyncWrap::env();
CryptoErrorStore* errors = CryptoJob<DeriveBitsTraits>::errors();
if (success_) {
CHECK(errors->Empty());
*err = v8::Undefined(env->isolate());
return DeriveBitsTraits::EncodeOutput(
env,
*CryptoJob<DeriveBitsTraits>::params(),
&out_,
result);
}
if (errors->Empty())
errors->Capture();
CHECK(!errors->Empty());
*result = v8::Undefined(env->isolate());
return v8::Just(errors->ToException(env).ToLocal(err));
}
SET_SELF_SIZE(DeriveBitsJob)
void MemoryInfo(MemoryTracker* tracker) const override {
tracker->TrackFieldWithSize("out", out_.size());
CryptoJob<DeriveBitsTraits>::MemoryInfo(tracker);
}
private:
ByteSource out_;
bool success_ = false;
};
void ThrowCryptoError(Environment* env,
unsigned long err, // NOLINT(runtime/int)
const char* message = nullptr);
#ifndef OPENSSL_NO_ENGINE
struct EnginePointer {
ENGINE* engine = nullptr;
bool finish_on_exit = false;
inline EnginePointer() = default;
inline explicit EnginePointer(ENGINE* engine_, bool finish_on_exit_ = false)
: engine(engine_),
finish_on_exit(finish_on_exit_) {}
inline EnginePointer(EnginePointer&& other) noexcept
: engine(other.engine),
finish_on_exit(other.finish_on_exit) {
other.release();
}
inline ~EnginePointer() { reset(); }
inline EnginePointer& operator=(EnginePointer&& other) noexcept {
if (this == &other) return *this;
this->~EnginePointer();
return *new (this) EnginePointer(std::move(other));
}
inline operator bool() const { return engine != nullptr; }
inline ENGINE* get() { return engine; }
inline void reset(ENGINE* engine_ = nullptr, bool finish_on_exit_ = false) {
if (engine != nullptr) {
if (finish_on_exit) {
// This also does the equivalent of ENGINE_free.
CHECK_EQ(ENGINE_finish(engine), 1);
} else {
CHECK_EQ(ENGINE_free(engine), 1);
}
}
engine = engine_;
finish_on_exit = finish_on_exit_;
}
inline ENGINE* release() {
ENGINE* ret = engine;
engine = nullptr;
finish_on_exit = false;
return ret;
}
};
EnginePointer LoadEngineById(const char* id, CryptoErrorStore* errors);
bool SetEngine(
const char* id,
uint32_t flags,
CryptoErrorStore* errors = nullptr);
void SetEngine(const v8::FunctionCallbackInfo<v8::Value>& args);
#endif // !OPENSSL_NO_ENGINE
void GetFipsCrypto(const v8::FunctionCallbackInfo<v8::Value>& args);
void SetFipsCrypto(const v8::FunctionCallbackInfo<v8::Value>& args);
void TestFipsCrypto(const v8::FunctionCallbackInfo<v8::Value>& args);
class CipherPushContext {
public:
inline explicit CipherPushContext(Environment* env) : env_(env) {}
inline void push_back(const char* str) {
list_.emplace_back(OneByteString(env_->isolate(), str));
}
inline v8::Local<v8::Array> ToJSArray() {
return v8::Array::New(env_->isolate(), list_.data(), list_.size());
}
private:
std::vector<v8::Local<v8::Value>> list_;
Environment* env_;
};
#if OPENSSL_VERSION_MAJOR >= 3
template <class TypeName,
TypeName* fetch_type(OSSL_LIB_CTX*, const char*, const char*),
void free_type(TypeName*),
const TypeName* getbyname(const char*),
const char* getname(const TypeName*)>
void array_push_back(const TypeName* evp_ref,
const char* from,
const char* to,
void* arg) {
if (!from)
return;
const TypeName* real_instance = getbyname(from);
if (!real_instance)
return;
const char* real_name = getname(real_instance);
if (!real_name)
return;
// EVP_*_fetch() does not support alias names, so we need to pass it the
// real/original algorithm name.
// We use EVP_*_fetch() as a filter here because it will only return an
// instance if the algorithm is supported by the public OpenSSL APIs (some
// algorithms are used internally by OpenSSL and are also passed to this
// callback).
TypeName* fetched = fetch_type(nullptr, real_name, nullptr);
if (!fetched)
return;
free_type(fetched);
static_cast<CipherPushContext*>(arg)->push_back(from);
}
#else
template <class TypeName>
void array_push_back(const TypeName* evp_ref,
const char* from,
const char* to,
void* arg) {
if (!from)
return;
static_cast<CipherPushContext*>(arg)->push_back(from);
}
#endif
inline bool IsAnyByteSource(v8::Local<v8::Value> arg) {
return arg->IsArrayBufferView() ||
arg->IsArrayBuffer() ||
arg->IsSharedArrayBuffer();
}
template <typename T>
class ArrayBufferOrViewContents {
public:
ArrayBufferOrViewContents() = default;
ArrayBufferOrViewContents(const ArrayBufferOrViewContents&) = delete;
void operator=(const ArrayBufferOrViewContents&) = delete;
inline explicit ArrayBufferOrViewContents(v8::Local<v8::Value> buf) {
if (buf.IsEmpty()) {
return;
}
CHECK(IsAnyByteSource(buf));
if (buf->IsArrayBufferView()) {
auto view = buf.As<v8::ArrayBufferView>();
offset_ = view->ByteOffset();
length_ = view->ByteLength();
data_ = view->Buffer()->Data();
} else if (buf->IsArrayBuffer()) {
auto ab = buf.As<v8::ArrayBuffer>();
offset_ = 0;
length_ = ab->ByteLength();
data_ = ab->Data();
} else {
auto sab = buf.As<v8::SharedArrayBuffer>();
offset_ = 0;
length_ = sab->ByteLength();
data_ = sab->Data();
}
}
inline const T* data() const {
// Ideally, these would return nullptr if IsEmpty() or length_ is zero,
// but some of the openssl API react badly if given a nullptr even when
// length is zero, so we have to return something.
if (size() == 0)
return &buf;
return reinterpret_cast<T*>(data_) + offset_;
}
inline T* data() {
// Ideally, these would return nullptr if IsEmpty() or length_ is zero,
// but some of the openssl API react badly if given a nullptr even when
// length is zero, so we have to return something.
if (size() == 0)
return &buf;
return reinterpret_cast<T*>(data_) + offset_;
}
inline size_t size() const { return length_; }
// In most cases, input buffer sizes passed in to openssl need to
// be limited to <= INT_MAX. This utility method helps us check.
inline bool CheckSizeInt32() { return size() <= INT_MAX; }
inline ByteSource ToByteSource() const {
return ByteSource::Foreign(data(), size());
}
inline ByteSource ToCopy() const {
if (size() == 0) return ByteSource();
ByteSource::Builder buf(size());
memcpy(buf.data<void>(), data(), size());
return std::move(buf).release();
}
inline ByteSource ToNullTerminatedCopy() const {
if (size() == 0) return ByteSource();
ByteSource::Builder buf(size() + 1);
memcpy(buf.data<void>(), data(), size());
buf.data<char>()[size()] = 0;
return std::move(buf).release(size());
}
template <typename M>
void CopyTo(M* dest, size_t len) const {
static_assert(sizeof(M) == 1, "sizeof(M) must equal 1");
len = std::min(len, size());
if (len > 0 && data() != nullptr)
memcpy(dest, data(), len);
}
private:
T buf = 0;
size_t offset_ = 0;
size_t length_ = 0;
void* data_ = nullptr;
// Declaring operator new and delete as deleted is not spec compliant.
// Therefore declare them private instead to disable dynamic alloc
void* operator new(size_t);
void* operator new[](size_t);
void operator delete(void*);
void operator delete[](void*);
};
v8::MaybeLocal<v8::Value> EncodeBignum(
Environment* env,
const BIGNUM* bn,
int size,
v8::Local<v8::Value>* error);
v8::Maybe<bool> SetEncodedValue(
Environment* env,
v8::Local<v8::Object> target,
v8::Local<v8::String> name,
const BIGNUM* bn,
int size = 0);
bool SetRsaOaepLabel(const EVPKeyCtxPointer& rsa, const ByteSource& label);
namespace Util {
void Initialize(Environment* env, v8::Local<v8::Object> target);
void RegisterExternalReferences(ExternalReferenceRegistry* registry);
} // namespace Util
} // namespace crypto
} // namespace node
#endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#endif // SRC_CRYPTO_CRYPTO_UTIL_H_
|